Qinghua Ren
Dr. Qinghua Ren (任清华)
Mail address: Department of Chemistry, Shanghai University,
99 Shangda Road, Shanghai, 200444, China
(通信地址:上海市宝山区上大路99号上海大学化学系 邮编:200444)
Office: E609 Email:qinghua.ren@shu.edu.cn
研究方向:计算化学、量子化学
[Education]
Oct. 2003 ~ Nov. 2006: PhD in Theoretical Chemistry, University of Bristol, UK
[Awards & Honors:
ORS Award of UK Department for Education and Skills (2003-2006);
University of Bristol Postgraduate Research Scholarship (2003-2006)]
Sep. 1999 ~ July 2002: Master of Quantum Chemistry, Peking University, China
[Awards & Honors:
Canon Excellence Scholarship of Peking University (2001)]
Sep. 1986 ~ July 1990: Bachelor of Quantum Chemistry, Beijing Normal University, China
[Awards & Honors:
Excellent Thesis Award of Beijing Normal University (1990)]
[Professional experiences]
Sep. 2010 ~ Current: Associate professor in Department of Chemistry, Shanghai University, China
[Sep. 2018~ Sep. 2019: Visiting scholar in the group of Prof. Joachim Sauer in Institute of Chemistry, Humboldt University of Berlin, Germany]
Sep. 2008~ Sep. 2010: Research fellow in Department of Pure & Applied Chemistry, University of Strathclyde, UK
[Sep. 28~ Oct. 31, 2009: Visiting scientist in Department of Chemistry, University of Queensland, Australia]
Jan. 2008 ~ Sep. 2008: Postdoctoral research assistant in School of Chemistry, University of Bristol, UK
Dec. 2006~ Dec. 2007: Postdoctoral fellow in Department of Chemistry, University of Helsinki, Finland
June 2003~ Sep. 2003: Research assistant in theoretical chemistry, Vrije Universiteit, Amsterdam, the Netherlands
[Teaching]
Quantum Chemistry, Structural Chemistry, Advanced Structural Chemistry, Molecular Modelling, Chemical Software and Application, Computational Chemistry, etc.
[Research areas]
1. Theoretical investigation of the reaction mechanisms for the transitional metal-catalyzed cross-coupling reactions.
2. Theoretical study of the quantum control by femtosecond laser pulses.
3. Theoretical study of the energy systems.
4. Molecular simulation of nano materials.
5. Computational materials, such as, VO2, etc.
6. Computational surface catalysis, such as, zeolite, etc.
7. Machine learning.
[Selected Publications]
1. T. Zhao, Q. Ren*, “The art of catalysis: Unveiling the secrets of CO2 and nitrogen molecule coupling to synthesize urea”. Mol. Catal. (2025), 572,114787.
2. D. Zhang, M. Deng, C. Li, Q. Ren*, Z. Fan*, “Constructing predictive implicit solvent models: Insights from exploring potential parameter space and property predictions”. J. Phys. Chem. B (2024), 128, 12517-12532.
3. S. Deng, D. Yi, T. Rujiralai, Q. Ren*, C. Tan, J. Ma*, “Investigating the photophysical properties of rhodamines using a spectroscopic single-molecule fluorescence method”. RSC Adv. (2024), 14, 38523-38529.
4. H. Cai, Q. Ren*, Y. Gao*, “Exploring the stable structures of cerium oxide nanoclusters using high-dimensional neural network potential”. Nanoscale. Adv. (2024), 6, 2623-2628.
5. X. Wan, T. Zhao, Q. Ren*, G. Zhou, “Role of TMEDA in Iron-Catalyzed C(sp2)−C(sp3) Cross-Coupling Reactions: A Mechanistic Study Using DFT Calculations”. Organometallics (2024), 43, 449-456.
6. Z. Yan, T. Zhao, Q. Ren*, “QM:QM studies on the mechanisms of interaction of alkenes with zeolitic Brønsted sites in H-FER”. Chem. Phys. (2024), 577, 112136.
7. L. Zheng, X. Wan, Q. Ren*, “DFT Study on the Mechanisms of Iron-Catalyzed Ortho C−H Homoallylation of Aromatic Ketones with Methylenecyclopropanes”. Organometallics (2023), 42, 632-640. Correction. Organometallics (2023), 42, 1674-1675.
8. W. Liu, Z. Zhang, S. Huo, Q. Ren, M. Liu “Bimetallic Zn3Sn2 electrocatalyst derived from mixed oxides enhances formate production towards CO2 electroreduction reaction”. Appl. Surf. Sci. (2023), 608, 155110.
9. Q. Ren*, D. Zhang, G. Zhou “DFT studies on the mechanisms of nickel-catalyzed reductive-coupling cyanation of aryl bromide”. J. Organomet. Chem. (2022), 970, 122368.
10. L. Zheng, Z. Yan, Q. Ren* “DFT study on the mechanisms of α-C cross coupling of π-bonds catalyzed by iron complexes”. Appl. Organometal. Chem. (2022), 36, e6549.
11. Q. Ren*, D. Zhang, L. Zheng “DFT studies on the mechanisms of enantioselective Ni-catalyzed reductive coupling reactions to form 1,1-diarylalkanes”. J. Organomet. Chem. (2021), 952, 122042.
12. Q. Ren, M. Rybicki, J. Sauer*, “Interaction of C3-C5 alkenes with zeolitic Brønsted sites: π‑complexes, alkoxides, and carbenium ions in H‑FER”. J. Phys. Chem. C (2020), 124, 10067-10078.
13. Y. Wang, Q. Ren*, “DFT study of the mechanisms of transition-metal-catalyzed reductive coupling reactions”. Curr. Org. Chem. (2020), 24, 1367-1383.
14. Y. Gao, L. Shi, S. Li, Q. Ren, “Mechanistic insights into higher alcohol synthesis from syngas on Rh/Cu single-atom alloy catalysts”. Phys. Chem. Chem. Phys. (2020), 22, 5070-5077.
15. Q. Ren*, S. An, Y. Wang, W. Tong, “Density functional theory study of the mechanisms of iron-catalyzed regioselective anti-Markovnikov addition of C-H bonds in aromatic ketones to alkenes”. Appl. Organometal. Chem. (2019), 33, e5183.
16. Y. Yu, W. Zhang, X. Han, X. Huang, J. Zhao, Q. Ren, H. Luo, “Menthol-based eutectic mixtures: Novel potential temporary consolidants for archaeological excavation applications”. J. Cult. Herit. (2019), 39, 103-109.
17. Q. Ren*, Y. Cai, Y. Wang, Y. Gao*, “First-principles calculations on the group-IIIA elements X-doped (X=Ga, In, Tl) VO2”. Phys. Status Solidi B (2018), 255, 1800138.
18. Q. Ren*, Y. Cai, Y. Gao*, “DFT study of M-doped (M=P, As, Bi) VO2 for thermochromic energy-saving materials”. Comp. Mater. Sci. (2018), 150, 337-345.
19. Q. Ren*, S. An, Z. Huang, N. Wu, X. Shen “Halogen atom transfer mechanism of iron-catalyzed direct arylation to form biaryl using density functional theory calculations”. J. Organomet. Chem. (2017), 844, 8-15.
20. N. Li, S. Wang, Q. Ren, S. Li, Y. Sun, “Catalytic mechanisms of methanol oxidation to methyl formate on vanadia−titania and vanadia−titania−sulfate catalysts”. J. Phys. Chem. C (2016), 120, 29290-29301.
21. Q. Ren*, N. Wu, Y. Cai, J. Fang, “DFT study of the mechanisms of iron-catalyzed regioselective synthesis of α‑aryl carboxylic acids from styrene derivatives and CO2”. Organometallics (2016), 35, 3932-3938.
22. J. Liu, Q. Ren*, X. Zhang*, H. Gong*, “Preparation of vinyl arenes by nickel-catalyzed reductive coupling of aryl halides with vinyl bromides”. Angew. Chem. Int. Ed. (2016), 55, 15544-15548.
23. J. Li, L. Wang, Y. Ye, X. Fu, Q. Ren, H. Zhang, Z. Deng, “Improving the solubility of dexlansoprazole by cocrystallization with isonicotinamide”. Eur. J. Pharm. Sci. (2016), 85, 47-52.
24. N. Teng, J. Ni, H. Chen, Q. Ren, H. Na, X. Liu, R. Zhang, J. Zhu, “Initiating highly effective hydrolysis of regenerated cellulose by controlling transition of crystal form with sulfolane under microwave radiation”. ACS Sustainable Chem. Eng. (2016), 4, 1507-1511.
25. J. Wan, Q. Ren*, N. Wu, Y. Gao*, “Density functional theory study of M-doped (M=B, C, N, Mg, Al) VO2 nanoparticles for thermochromic energy-saving foils”. J. Alloy. Compd. (2016), 662, 621-627.
26. Q. Ren*, X. Shen, “Reaction mechanism for the iron-catalyzed biaryl cross-coupling of aryl Grignard reagents”. Acta Phys.-Chim. Sin. (2015), 31, 852-858.
27. Q. Ren*, X. Shen, J. Wan, J. Fang, “Density functional theory study of the mechanisms of iron-catalyzed intramolecular C-H amination [1,2]-shift tandem reactions of aryl azides”. Organometallics (2015), 34, 1129-1136.
28. Q. Ren*, J. Wan, Y. Gao, “Theoretical study of electronic properties of X-doped (X=F, Cl, Br, I) VO2 nanoparticles for thermochromic energy-saving foils”. J. Phys. Chem. A (2014), 118, 11114-11118.
29. X. Zhang, Q. Ren, W. Rao, Y. Ding, “Improvement of Victor Meyer method for the determination of relative molecular mass”. Sci. Technol. West China (2014), 13, 11-12.
30. Q. Ren*, F. Jiang, H. Gong, “DFT study of the single electron transfer mechanisms in Ni-catalyzed reductive cross-coupling of aryl bromide and alkyl bromide”. J. Organomet. Chem. (2014), 770, 130-135.
31. F. Jiang, Q. Ren*, “Reaction mechanism for the Ni-catalyzed reductive cross-coupling of aryl halides”. Acta Phys.-Chim. Sin. (2014), 30, 821-828.
32. Q. Ren*, S. Guan, X. Shen, J. Fang, “Density functional theory study of the mechanisms of iron-catalyzed aminohydroxylation reactions”. Organometallics (2014), 33, 1423-1430.
33. F. Jiang, Q. Ren*, “Theoretical investigation of the mechanisms of the biphenyl formation in Ni-catalyzed reductive cross-coupling system”. J. Organomet. Chem. (2014), 757, 72-78.
34. Q. Ren*, S. Guan, F. Jiang, J. Fang, “Density functional theory study of the mechanisms of iron-catalyzed cross-coupling reactions of alkyl Grignard reagents”. J. Phys. Chem. A (2013), 117, 756-764.
35. F. Wu, W. Lu, Q. Qian, Q. Ren*, H. Gong*, “Ketone formation via mild nickel-catalyzed reductive coupling of alkyl halides with aryl acid chlorides”. Org. Lett. (2012), 14, 3044-3047.
36. V. Hanninen, M. Korpinen, Q. Ren, R. Hinde, L. Halonen, “An ab initio study of van der waals potential energy parameters for silver clusters”. J. Phys. Chem. A (2011), 115, 2332-2339.
37. Q. Ren, K. E. Ranaghan, A. J. Mulholland, J. N. Harvey, F. R. Manby, G. G. Balint-Kurti, “Optimal control design of laser pulses for mode specific vibrational excitation in an enzyme-substrate complex”. Chem. Phys. Lett. (2010), 491, 230-236.
38. Q. Ren, G. G. Balint-Kurti, “Design of infrared laser pulses for the vibrational de-excitation of translationally cold Li2 Molecules”. J. Phys. Chem. A (2009), 113, 14255-14260.
39. T. Herrmann, Q. Ren, G. G. Balint-Kurti, F. R. Manby, “Ab initio design of picosecond infrared laser pulses for controlling vibrational-rotational excitation of CO molecules”, J. Chem. Phys. (2007), 126, 224309.
40. G. G. Balint-kurti, F. R. Manby, Q. Ren, S. Zou, M. Artamonov, T. Ho, H. Rabitz “Ab initio design of laser pulses for controlling molecular motion”, in Coherent control of molecules, Benjamin Lasorne and Graham Worth, Editors, Published by CCP6, UK, ISBN: 0-9545289-5-6, (2006), pages: 1-6.
41. Q. Ren, G. G. Balint-Kurti, F. R. Manby, M. Artamonov, T. Ho, H. Rabitz, “Design of infrared laser pulses for the deexcitation of highly excited homonuclear diatomic molecules”, J. Chem. Phys. (2006), 125, 021104.
(Full Highlighted in Virtual Journal of Ultrafast Science, Aug. 2006, volume 5, issue 8)
42. S. Zou, Q. Ren, G. G. Balint-Kurti, F. R. Manby, “Analytical control of molecular excitations including strong field polarization effects”, Phys. Rev. Lett. (2006), 96, 243003.
43. Q. Ren, G. G. Balint-Kurti, F. R. Manby, M. Artamonov, T Ho, H. Rabitz, “Quantum control of molecular vibrational and rotational excitations in a homonuclear diatomic molecule: A full three-dimensional treatment with polarization forces”, J. Chem. Phys. (2006), 124, 014111.
(Full Highlighted in Virtual Journal of Ultrafast Science, Feb. 2006, volume 5, issue 2)
44. G. G. Balint-Kurti, F. R. Manby, Q. Ren, M. Artamonov, T. Ho, H. Rabitz, “Quantum control of molecular motion including electronic polarization effects with a two-stage tookit”, J. Chem. Phys. (2005), 122, 084110.
(Full Highlighted in Virtual Journal of Ultrafast Science, March 2005, volume 4, issue 3)
45. Q. Ren, Z. Chen, “Comparative study on effects of bridging and terminal ligands on magnetic exchange interaction in [(NH3)5Cr(μ-X)Cr(NH3)4L]n+ (X=O,OH; L=OH, OH2, NH3; n=4,5): density functional theory study”, J. Mol. Struct. (THEOCHEM) (2005), 719, 159-168.
46. Q. Ren, Z. Chen, “Additive contribution of mixed bridges to magnetic exchange interation in hydroxo- and carbonato-bridged chromium (III) dimers: a density functional theory study”, J. Mol. Struct. (THEOCHEM) (2003), 634, 11-21.
47. Q. Ren, Z. Chen, L. Zhang, “Magnetic exchange cooperative effect of the bridges in μ-hydroxo and μ-acetato bridged chromium (III) dimers: A density functional theory coupling the broken-symmetry approach”, Chem. Phys. Lett. (2002), 364, 475-483.
48. Q. Ren, Z. Chen, J. Ren, H. Wei, W. Feng, L. Zhang, “Ferromagnetic coupling behavior in oxo-bridged binuclear bis(η5-cyclopentadienyl) titanium(III) complex (Cp2Ti)2(μ-O): A density functional theory combined with broken-symmetry approach”, J. Phys. Chem. A (2002), 106, 6161-6166.
[Selected Presentations]
1) March 13-15, 2019, Weimer, Germany, the 52nd German Catalysis Meeting.
2) Aug. 13-17, 2017, Manchester, UK, the 7th International Symposium on Energy.
3) June 8-13, 2015, Beijing, the 15th International Congress of Quantum Chemistry.
4) June 29th-July 1st, 2013, Dalian, BIT’s 4th Annual Global Congress of Catalysis-2013.
5) April 8th, 2010, University of Strathclyde, Glasgow, UK, computational chemistry symposium (ScotCHEM 2010).
6) Aug. 2-7, 2009, SECC, Glasgow, UK, the 42nd IUPAC congress.
7) April 7-9, 2009, University of Strathclyde, Glasgow, UK, the third annual meeting in physical organic chemistry (SymPOC 2009).
8) June 22-25, 2008, Cirencester, UK, Computational molecular science 2008 meeting.
9) April 24, 2008, Birmingham, UK, CoCochem Graduate Meeting.
10)July 3-5, 2006, Birmingham, UK, CCP6 workshop on coherent control of molecules.
11) May 7-11, 2006, Boston, USA, Sixth International Conference on Computational Nanoscience and Nanotechnology (ICCN).
12) April 20, 2006, University of Birmingham, UK, Royal Society of Chemistry, Theoretical Chemistry Group, 26th Graduate Student Meeting.
13) Sep. 26, 2005, University of Southampton, UK, 4th South West Computational Chemistry Meeting (SWCC4).
14) April 5-6, 2005, Imperial College London, UK, NSCCS Molpro Workshop.
15) Jan. 26, 2005, Bristol, UK, Exploring chemical reactivity: From isolated molecules to surfaces. (Faraday Division).
16) Nov. 10, 2004, University College London, UK, Controlling atoms and molecules: In theory and practice.
17) Oct. 13, 2004, University of Bath, UK, 3rd South West Computational Chemistry Meeting.
18) Sep. 05-10, 2004, Nunspeet, the Netherlands, International conference on dynamics of molecular systems. (Molec XV).
19) Aug. 07-12, 2004, Bristol, UK, Gas Kinetics Symposium.
20) April 05-07, 2004, St Catherine’s College, University of Oxford, UK, Faraday Discussion 127, Non-adiabatic effects in chemical dynamics.
21) Dec. 01, 2003, London, UK, Young Modeller’s Forum 2003 MGMS & RSC MMG.
22) Oct. 25, 2003, University of Cardiff, UK, 2nd South West Computational Chemistry Meeting.
Updated 2025.01.02